Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
1.
Endocr Connect ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38657653

In critically ill adults, high plasma cortisol in face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0-36 months), plasma was obtained pre-operatively, intraoperatively and on post-operative day 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (p<0.0001) but no longer thereafter (p<0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (p<0.0001), glucocorticoid-treated patients had suppressed ACTH already intraoperatively (p≤0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally-activated HPA-axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

2.
Am J Respir Crit Care Med ; 209(5): 497-506, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-37991900

This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or "NICE-SUGAR," trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest "TGC-fast" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care.


Hyperglycemia , Hypoglycemia , Humans , Glycemic Control , Blood Glucose , Insulin/therapeutic use , Glucose , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Intensive Care Units
3.
Intensive Care Med Exp ; 11(1): 84, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38015312

Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research.

4.
Skelet Muscle ; 13(1): 12, 2023 08 04.
Article En | MEDLINE | ID: mdl-37537627

BACKGROUND: Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS: In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS: FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS: Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.


Critical Illness , Sepsis , Animals , Mice , Endoplasmic Reticulum Stress , Muscle Weakness/etiology , Muscle Weakness/metabolism , Disease Models, Animal , Sepsis/complications , Sepsis/metabolism , Sepsis/pathology
5.
Endocr Rev ; 44(6): 1096-1106, 2023 11 09.
Article En | MEDLINE | ID: mdl-37409973

Based on insights obtained during the past decade, the classical concept of an activated hypothalamus-pituitary-adrenocortical axis in response to critical illness is in need of revision. After a brief central hypothalamus-pituitary-adrenocortical axis activation, the vital maintenance of increased systemic cortisol availability and action in response to critical illness is predominantly driven by peripheral adaptations rather than by an ongoing centrally activated several-fold increased production and secretion of cortisol. Besides the known reduction of cortisol-binding proteins that increases free cortisol, these peripheral responses comprise suppressed cortisol metabolism in liver and kidney, prolonging cortisol half-life, and local alterations in expression of 11ßHSD1, glucocorticoid receptor-α (GRα), and FK506 binding protein 5 (FKBP51) that appear to titrate increased GRα action in vital organs and tissues while reducing GRα action in neutrophils, possibly preventing immune-suppressive off-target effects of increased systemic cortisol availability. Peripherally increased cortisol exerts negative feed-back inhibition at the pituitary level impairing processing of pro-opiomelanocortin into ACTH, thereby reducing ACTH-driven cortisol secretion, whereas ongoing central activation results in increased circulating pro-opiomelanocortin. These alterations seem adaptive and beneficial for the host in the short term. However, as a consequence, patients with prolonged critical illness who require intensive care for weeks or longer may develop a form of central adrenal insufficiency. The new findings supersede earlier concepts such as "relative," as opposed to "absolute," adrenal insufficiency and generalized systemic glucocorticoid resistance in the critically ill. The findings also question the scientific basis for broad implementation of stress dose hydrocortisone treatment of patients suffering from acute septic shock solely based on assumption of cortisol insufficiency.


Adrenal Insufficiency , Pituitary Diseases , Humans , Hydrocortisone/metabolism , Critical Illness/therapy , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology , Hypothalamo-Hypophyseal System , Adrenal Insufficiency/drug therapy , Adrenal Insufficiency/metabolism , Hypothalamus , Pituitary Diseases/metabolism , Adrenocorticotropic Hormone/metabolism , Pituitary-Adrenal System/metabolism
6.
Crit Care ; 27(1): 251, 2023 06 26.
Article En | MEDLINE | ID: mdl-37365667

BACKGROUND: Withholding parenteral nutrition (PN) until one week after PICU admission facilitated recovery from critical illness and protected against emotional and behavioral problems 4 years later. However, the intervention increased the risk of hypoglycemia, which may have counteracted part of the benefit. Previously, hypoglycemia occurring under tight glucose control in critically ill children receiving early PN did not associate with long-term harm. We investigated whether hypoglycemia in PICU differentially associates with outcome in the context of withholding early PN, and whether any potential association with outcome may depend on the applied glucose control protocol. METHODS: In this secondary analysis of the multicenter PEPaNIC RCT, we studied whether hypoglycemia in PICU associated with mortality (N = 1440) and 4-years neurodevelopmental outcome (N = 674) through univariable comparison and multivariable regression analyses adjusting for potential confounders. In patients with available blood samples (N = 556), multivariable models were additionally adjusted for baseline serum NSE and S100B concentrations as biomarkers of neuronal, respectively, astrocytic damage. To study whether an association of hypoglycemia with outcome may be affected by the nutritional strategy or center-specific glucose control protocol, we further adjusted the models for the interaction between hypoglycemia and the randomized nutritional strategy, respectively, treatment center. In sensitivity analyses, we studied whether any association with outcome was different in patients with iatrogenic or spontaneous/recurrent hypoglycemia. RESULTS: Hypoglycemia univariably associated with higher mortality in PICU, at 90 days and 4 years after randomization, but not when adjusted for risk factors. After 4 years, critically ill children with hypoglycemia scored significantly worse for certain parent/caregiver-reported executive functions (working memory, planning and organization, metacognition) than patients without hypoglycemia, also when adjusted for risk factors including baseline NSE and S100B. Further adjustment for the interaction of hypoglycemia with the randomized intervention or treatment center revealed a potential interaction, whereby tight glucose control and withholding early PN may be protective. Impaired executive functions were most pronounced in patients with spontaneous or recurrent hypoglycemia. CONCLUSION: Critically ill children exposed to hypoglycemia in PICU were at higher risk of impaired executive functions after 4 years, especially in cases of spontaneous/recurrent hypoglycemia.


Blood Glucose , Hypoglycemia , Child , Humans , Blood Glucose/analysis , Glycemic Control , Critical Illness/therapy , Intensive Care Units, Pediatric
7.
EBioMedicine ; 84: 104284, 2022 Oct.
Article En | MEDLINE | ID: mdl-36162206

The classical model of the vital increase in systemic glucocorticoid availability in response to sepsis- and hyperinflammation-induced critical illness is one of an activated hypothalamus-pituitary-adrenocortical axis. However, research performed in the last decade has challenged this rather simple model and has unveiled a more complex, time-dependent set of responses. ACTH-driven cortisol production is only briefly increased, rapidly followed by orchestrated peripheral adaptations that maintain increased cortisol availability for target tissues without continued need for increased cortisol production and by changes at the target tissues that guide and titrate cortisol action matched to tissue-specific needs. One can speculate that these acute changes are adaptive and that treatment with stress-doses of hydrocortisone may negatively interfere with these adaptive changes. These insights also suggest that prolonged critically ill patients, treated in the ICU for several weeks, may develop central adrenal insufficiency, although it remains unclear how to best diagnose and treat this condition.


Critical Illness , Sepsis , Adrenocorticotropic Hormone , Critical Illness/therapy , Glucocorticoids , Humans , Hydrocortisone , Hypothalamo-Hypophyseal System , Sepsis/complications , Translational Research, Biomedical
8.
Clin Sci (Lond) ; 136(11): 861-878, 2022 06 17.
Article En | MEDLINE | ID: mdl-35642779

Sepsis is defined as any life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains an important cause of critical illness and has considerable short- and long-term morbidity and mortality. In the last decades, preclinical and clinical research has revealed a biphasic pattern in the (neuro-)endocrine responses to sepsis as to other forms of critical illness, contributing to development of severe metabolic alterations. Immediately after the critical illness-inducing insult, fasting- and stress-induced neuroendocrine and cellular responses evoke a catabolic state in order to provide energy substrates for vital tissues, and to concomitantly activate cellular repair pathways while energy-consuming anabolism is postponed. Large randomized controlled trials have shown that providing early full feeding in this acute phase induced harm and reversed some of the neuro-endocrine alterations, which suggested that the acute fasting- and stress-induced responses to critical illness are likely interlinked and benefical. However, it remains unclear whether, in the context of accepting virtual fasting in the acute phase of illness, metabolic alterations such as hyperglycemia are harmful or beneficial. When patients enter a prolonged phase of critical illness, a central suppression of most neuroendocrine axes follows. Prolonged fasting and central neuroendocrine suppression may no longer be beneficial. Although pilot studies have suggested benefit of fasting-mimicking diets and interventions that reactivate the central neuroendocrine suppression selectively in the prolonged phase of illness, further study is needed to investigate patient-oriented outcomes in larger randomized trials.


Hyperglycemia , Sepsis , Critical Illness , Humans , Metabolic Networks and Pathways , Neurosecretory Systems
9.
Sci Rep ; 12(1): 10591, 2022 06 22.
Article En | MEDLINE | ID: mdl-35732826

In septic mice, 3-hydroxybutyrate-sodium-salt has shown to partially prevent sepsis-induced muscle weakness. Although effective, the excessive sodium load was toxic. We here investigated whether ketone ester 3-hydroxybutyl-3-hydroxybutanoate (3HHB) was a safer alternative. In a mouse model of abdominal sepsis, the effects of increasing bolus doses of 3HHB enantiomers on mortality, morbidity and muscle force were investigated (n = 376). Next, plasma 3HB- clearance after bolus D-3HHB was investigated (n = 27). Subsequently, in septic mice, the effect on mortality and muscle force of a continuous D,L-3HHB infusion was investigated (n = 72). In septic mice, as compared with placebo, muscle force was increased at 20 mmol/kg/day L-3HHB and at 40 mmol/kg/day D- and D,L-3HHB. However, severity of illness and mortality was increased by doubling the effective bolus doses. Bolus 3HHB caused a higher 3HB- plasma peak and slower clearance with sepsis. Unlike bolus injections, continuous infusion of D,L-3HHB did not increase severity of illness or mortality, while remaining effective in improving muscle force. Treatment of septic mice with the ketone ester 3HHB partly prevented muscle weakness. Toxicity of 3HHB administered as bolus was completely avoided by continuous infusion of the same dose. Whether continuous infusion of ketone esters represents a promising intervention to also prevent ICU-acquired weakness in human patients should be investigated.


Esters , Ketones , Paresis , Sepsis , Animals , Critical Illness , Disease Models, Animal , Esters/therapeutic use , Ketones/therapeutic use , Mice , Muscle Weakness/drug therapy , Muscle Weakness/prevention & control , Paresis/etiology , Paresis/prevention & control , Sepsis/complications , Sepsis/drug therapy , Sodium
10.
EBioMedicine ; 80: 104057, 2022 Jun.
Article En | MEDLINE | ID: mdl-35584557

BACKGROUND: Reduced glucocorticoid-receptor (GR) expression in blood suggested that critically ill patients become glucocorticoid-resistant necessitating stress-doses of glucocorticoids. We hypothesised that critical illness evokes a tissue-specific, time-dependent expression of regulators of GR-action which adaptively guides glucocorticoid action to sites of need. METHODS: We performed a prospective, observational, cross-sectional human study and two translational mouse studies. In freshly-isolated neutrophils and monocytes and in skeletal muscle and subcutaneous adipose tissue of 137 critically ill patients and 20 healthy controls and in skeletal muscle and adipose tissue as well as in vital tissues (heart, lung, diaphragm, liver, kidney) of 88 septic and 26 healthy mice, we quantified gene expression of cortisone-reductase 11ß-HSD1, glucocorticoid-receptor-isoforms GRα and GRß, GRα-sensitivity-regulating-co-chaperone FKBP51, and GR-action-marker GILZ. Expression profiles were compared in relation to illness-duration and systemic-glucocorticoid-availability. FINDINGS: In patients' neutrophils, GRα and GILZ were substantially suppressed (p≤0·05) throughout intensive care unit (ICU)-stay, while in monocytes low/normal GRα coincided with increased GILZ (p≤0·05). FKBP51 was increased transiently (neutrophils) or always (monocytes,p≤0·05). In patients' muscle, 11ß-HSD1 and GRα were low-normal (p≤0·05) and substantially suppressed in adipose tissue (p≤0·05); FKBP51 and GILZ were increased in skeletal muscle (p≤0·05) but normal in adipose tissue. GRß was undetectable. Increasing systemic glucocorticoid availability in patients independently associated with further suppressed muscle 11ß-HSD1 and GRα, further increased FKBP51 and unaltered GILZ (p≤0·05). In septic mouse heart and lung, 11ß-HSD1, FKBP51 and GILZ were always high (p≤0·01). In heart, GRα was suppressed (p≤0·05), while normal or high in lung (all p≤0·05). In diaphragm, 11ß-HSD1 was high/normal, GRα low/normal and FKBP51 and GILZ high (p≤0·01). In kidney, 11ß-HSD1 transiently increased but decreased thereafter, GRα was normal and FKBP51 and GILZ high (p≤0·01). In liver, 11ß-HSD1 was suppressed (p≤0·01), GRα normal and FKBP51 high (p≤0·01) whereas GILZ was transiently decreased but elevated thereafter (p≤0·05). Only in lung and diaphragm, treatment with hydrocortisone further increased GILZ. INTERPRETATION: Tissue-specific, time-independent adaptations to critical illness guided GR-action predominantly to vital tissues such as lung, while (partially) protecting against collateral harm in other cells and tissues, such as neutrophils. These findings argue against maladaptive generalised glucocorticoid-resistance necessitating glucocorticoid-treatment. FUNDING: Research-Foundation-Flanders, Methusalem-Program-Flemish-Government, European-Research-Council, European-Respiratory-Society.


Glucocorticoids , Receptors, Glucocorticoid , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Animals , Critical Illness , Cross-Sectional Studies , Gene Expression , Humans , Mice , Prospective Studies , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
11.
J Cachexia Sarcopenia Muscle ; 13(1): 418-433, 2022 02.
Article En | MEDLINE | ID: mdl-34994068

BACKGROUND: Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness. METHODS: In a mouse model of sepsis, we investigated the effects of genetic leptin inactivation in obese mice (leptin-deficient obese mice vs. diet-induced obese mice) and of leptin supplementation in lean mice (n = 110). We assessed impact on survival, body weight and composition, markers of muscle wasting and weakness, inflammation, and lipid metabolism. In human lean and overweight/obese intensive care unit (ICU) patients, we assessed markers of protein catabolism (n = 1388) and serum leptin (n = 150). RESULTS: Sepsis mortality was highest in leptin-deficient obese mice (53% vs. 23% in diet-induced obese mice and 37% in lean mice, P = 0.03). Irrespective of leptin, after 5 days of sepsis, lean mice lost double the amount of lean body mass than obese mice (P < 0.0005). Also, irrespective of leptin, obese mice maintained specific muscle force up to healthy levels (P = 0.3) whereas lean mice suffered from reduced specific muscle force (72% of healthy controls, P < 0.0002). As compared with lean septic mice, both obese septic groups had less muscle atrophy, liver amino acid catabolism, and inflammation with a 50% lower plasma TNFα increase (P < 0.005). Conversely, again mainly irrespective of leptin, obese mice lost double amount of fat mass than lean mice after 5 days of sepsis (P < 0.0001), showed signs of increased lipolysis and ketogenesis, and had higher plasma HDL and LDL lipoprotein concentrations (P ≤ 0.01 for all). Muscle fibre type composition was not altered during sepsis, but a higher atrophy sensitivity of type IIb fibres compared with IIa and IIx fibres was observed, independent of obesity or leptin. After 5 days of critical illness, serum leptin was higher (P < 0.0001) and the net waste of nitrogen (P = 0.006) and plasma urea-to-creatinine ratio (P < 0.0001) was lower in overweight/obese compared with lean ICU human patients. CONCLUSIONS: Leptin did not mediate the protective effect of obesity against sepsis-induced muscle wasting and weakness in mice. Instead, obesity-independent of leptin-attenuated inflammation, protein catabolism, and dyslipidaemia, pathways that may play a role in the observed muscle protection.


Dyslipidemias , Sepsis , Animals , Humans , Leptin , Mice , Muscle Weakness/etiology , Muscle Weakness/metabolism , Obesity/complications , Sepsis/complications , Sepsis/metabolism
12.
Endocrinology ; 163(1)2022 01 01.
Article En | MEDLINE | ID: mdl-34698826

PURPOSE: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed. We hypothesized that treatment of sepsis with hydrocortisone (HC) aggravates this phenotype whereas CRH infusion safeguards ACTH-driven adrenocortical structure. METHODS: In a fluid-resuscitated, antibiotics-treated mouse model of prolonged sepsis, we compared the effects of HC and CRH infusion with placebo on plasma ACTH, POMC, and CORT; on markers of hypothalamic CRH and AVP signaling and pituitary POMC processing; and on the adrenocortical structure and markers of steroidogenesis. In adrenal explants, we studied the steroidogenic capacity of POMC. RESULTS: During sepsis, HC further suppressed plasma ACTH, but not POMC, predominantly by suppressing sepsis-activated CRH/AVP-signaling pathways. In contrast, in CRH-treated sepsis, plasma ACTH was normalized following restoration of pituitary POMC processing. The sepsis-induced rise in markers of adrenocortical steroidogenesis was unaltered by CRH and suppressed partially by HC, which also increased adrenal markers of inflammation. Ex vivo stimulation of adrenal explants with POMC increased CORT as effectively as an equimolar dose of ACTH. CONCLUSIONS: Treatment of sepsis with HC impaired integrity and function of the hypothalamic-pituitary-adrenal axis at the level of the pituitary and the adrenal cortex while CRH restored pituitary POMC processing without affecting the adrenal cortex. Sepsis-induced high-circulating POMC may be responsible for ongoing adrenocortical steroidogenesis despite low ACTH.


Corticotropin-Releasing Hormone/administration & dosage , Hydrocortisone/administration & dosage , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Sepsis/metabolism , Adrenocorticotropic Hormone/metabolism , Animals , Arginine Vasopressin/chemistry , Corticosterone/blood , Hypothalamus/metabolism , In Situ Hybridization , Male , Mice , Mice, Inbred C57BL , Phenotype , Pituitary Gland/metabolism , Pituitary Gland, Anterior/metabolism , Pro-Opiomelanocortin/chemistry , Sepsis/physiopathology , Signal Transduction
13.
Intensive Care Med ; 48(1): 25-35, 2022 Jan.
Article En | MEDLINE | ID: mdl-34816288

PURPOSE: Withholding parenteral nutrition (PN) early in critical illness, late-PN, has shown to prevent infections despite a higher peak C-reactive protein (CRP). We investigated whether the accentuated CRP rise was caused by a systemic inflammatory effect mediated by cytokines or arose as a consequence of the different feeding regimens, and whether it related to improved outcome with late-PN. METHODS: This secondary analysis of the EPaNIC-RCT first investigated, with multivariable linear regression analyses, determinants of late-PN-induced CRP rise and its association with cytokine responses (IL-6, IL-10, TNF-α) in matched early-PN and late-PN patients requiring intensive care for ≥ 3 days. Secondly, with multivariable logistic regression and Cox proportional-hazard analyses, we investigated whether late-PN-induced CRP rises mediated infection prevention and enhanced recovery or reflected an adverse effect counteracting such benefits of late-PN. RESULTS: CRP peaked on day 3, higher with late-PN [216(152-274)mg/l] (n = 946) than with early-PN [181(122-239)mg/l] (n = 946) (p < 0.0001). Independent determinants of higher CRP rise were lower carbohydrate and protein intakes (p ≤ 0.04) with late-PN, besides higher blood glucose and serum insulin concentrations (p ≤ 0.01). Late-PN did not affect cytokines. Higher CRP rises were independently associated with more infections and lower likelihood of early ICU discharge (p ≤ 0.002), and the effect size of late-PN versus early-PN on these outcomes was increased rather than reduced after adjusting for CRP rise, not confirming a mediating role. CONCLUSIONS: The higher CRP rise with late-PN, explained by the early macronutrient deficits, did not relate to cytokine responses and thus did not reflect more systemic inflammation. Instead of mediating clinical benefit on infection or recovery, the accentuated CRP rise appeared an adverse effect reducing such late-PN benefits.


C-Reactive Protein , Critical Illness , Critical Illness/therapy , Humans , Inflammation , Nutrients , Time Factors
15.
Crit Care ; 25(1): 373, 2021 Oct 25.
Article En | MEDLINE | ID: mdl-34696774

BACKGROUND: Recent evidence suggests a potentially protective effect of increasing ketone body availability via accepting low macronutrient intake early after onset of critical illness. The impact of blood glucose control with insulin on circulating ketones is unclear. Whereas lowering blood glucose may activate ketogenesis, high insulin concentrations may have the opposite effect. We hypothesized that the previously reported protective effects of tight glucose control in critically ill patients receiving early parenteral nutrition may have been mediated in part by activation of ketogenesis. METHODS: This is a secondary analysis of 3 randomized controlled trials on tight versus liberal blood glucose control in the intensive care unit, including 700 critically ill children and 2748 critically ill adults. All patients received early parenteral nutrition as part of the contemporary standard of care. Before studying a potential mediator role of circulating ketones in improving outcome, we performed a time course analysis to investigate whether tight glucose control significantly affected ketogenesis and to identify a day of maximal effect, if any. We quantified plasma/serum 3-hydroxybutyrate concentrations from intensive care unit admission until day 3 in 2 matched subsets of 100 critically ill children and 100 critically ill adults. Univariable differences between groups were investigated by Kruskal-Wallis test. Differences in 3-hydroxybutyrate concentrations between study days were investigated by Wilcoxon signed-rank test. RESULTS: In critically ill children and adults receiving early parenteral nutrition, tight glucose control, as compared with liberal glucose control, lowered mean morning blood glucose on days 1-3 (P < 0.0001) via infusing insulin at a higher dose (P < 0.0001). Throughout the study period, caloric intake was not different between groups. In both children and adults, tight glucose control did not affect 3-hydroxybutyrate concentrations, which were suppressed on ICU days 1-3 and significantly lower than the ICU admission values for both groups (P < 0.0001). CONCLUSION: Tight versus liberal glucose control in the context of early parenteral nutrition did not affect 3-hydroxybutyrate concentrations in critically ill patients. Hence, the protective effects of tight glucose control in this context cannot be attributed to increased ketone body availability.


3-Hydroxybutyric Acid , Critical Illness , Glycemic Control , 3-Hydroxybutyric Acid/blood , Adult , Child , Glycemic Control/statistics & numerical data , Humans , Insulins/administration & dosage
16.
BMC Pharmacol Toxicol ; 22(1): 50, 2021 09 20.
Article En | MEDLINE | ID: mdl-34544493

BACKGROUND: In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use. METHODS: In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103). For 5-day survivors, also the impact on ex-vivo-measured muscle force, blood electrolytes, and markers of vital organ inflammation/damage was documented. RESULTS: By doubling the reference dose of 150 mg/day to 300 mg/day 3HB-Na, illness severity scores doubled (p = 0.004) and mortality increased from 30.4 to 87.5 % (p = 0.002). De-escalating this dose to 225 mg still increased mortality (p ≤ 0.03) and reducing the dose to 180 mg/day still increased illness severity (p ≤ 0.04). Doses of 180 mg/day and higher caused more pronounced metabolic alkalosis and hypernatremia (p ≤ 0.04) and increased markers of kidney damage (p ≤ 0.05). Doses of 225 mg/day 3HB-Na and higher caused dehydration of brain and lungs (p ≤ 0.05) and increased markers of hippocampal neuronal damage and inflammation (p ≤ 0.02). Among survivors, 150 mg/day and 180 mg/day increased muscle force compared with placebo (p ≤ 0.05) up to healthy control levels (p ≥ 0.3). CONCLUSIONS: This study indicates that 150 mg/day 3HB-Na supplementation prevented sepsis-induced muscle weakness in mice. However, this dose appeared maximally effective though close to the toxic threshold, possibly in part explained by excessive Na+ intake with 3HB-Na. Although lower doses were not tested and thus might still hold therapeutic potential, the current results point towards a low toxic threshold for the clinical use of ketone salts in human critically ill patients. Whether 3HB-esters are equally effective and less toxic should be investigated.


3-Hydroxybutyric Acid/administration & dosage , Dietary Supplements , Muscle Weakness/therapy , Sepsis/therapy , 3-Hydroxybutyric Acid/adverse effects , Acid-Base Equilibrium , Aldosterone/blood , Animals , Brain/pathology , Dietary Supplements/adverse effects , Dose-Response Relationship, Drug , Infusions, Parenteral , Ketones/metabolism , Kidney/pathology , Liver/pathology , Male , Maximum Tolerated Dose , Mice, Inbred C57BL , Muscle Weakness/etiology , Muscle Weakness/pathology , Sepsis/complications , Sepsis/pathology , Severity of Illness Index
17.
Crit Care ; 25(1): 252, 2021 07 17.
Article En | MEDLINE | ID: mdl-34274000

BACKGROUND: Muscle weakness is a complication of critical illness which hampers recovery. In critically ill mice, supplementation with the ketone body 3-hydroxybutyrate has been shown to improve muscle force and to normalize illness-induced hypocholesterolemia. We hypothesized that altered cholesterol homeostasis is involved in development of critical illness-induced muscle weakness and that this pathway can be affected by 3-hydroxybutyrate. METHODS: In both human critically ill patients and septic mice, the association between circulating cholesterol concentrations and muscle weakness was assessed. In septic mice, the impact of 3-hydroxybutyrate supplementation on cholesterol homeostasis was evaluated with use of tracer technology and through analysis of markers of cholesterol metabolism and downstream pathways. RESULTS: Serum cholesterol concentrations were lower in weak than in non-weak critically ill patients, and in multivariable analysis adjusting for baseline risk factors, serum cholesterol was inversely correlated with weakness. In septic mice, plasma cholesterol correlated positively with muscle force. In septic mice, exogenous 3-hydroxybutyrate increased plasma cholesterol and altered cholesterol homeostasis, by normalization of plasma mevalonate and elevation of muscular, but not hepatic, expression of cholesterol synthesis genes. In septic mice, tracer technology revealed that 3-hydroxybutyrate was preferentially taken up by muscle and metabolized into cholesterol precursor mevalonate, rather than TCA metabolites. The 3-hydroxybutyrate protection against weakness was not related to ubiquinone or downstream myofiber mitochondrial function, whereas cholesterol content in myofibers was increased. CONCLUSIONS: These findings point to a role for low cholesterol in critical illness-induced muscle weakness and to a protective mechanism-of-action for 3-hydroxybutyrate supplementation.


Cholesterol/analysis , Homeostasis/drug effects , 3-Hydroxybutyric Acid , Aged , Aged, 80 and over , Animals , Cholesterol/metabolism , Critical Illness/therapy , Disease Models, Animal , Female , Humans , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL/metabolism , Mice, Inbred C57BL/physiology , Middle Aged , Multivariate Analysis , Muscle Weakness/physiopathology
18.
Handb Clin Neurol ; 182: 417-431, 2021.
Article En | MEDLINE | ID: mdl-34266609

Following the onset of any life-threatening illness that requires intensive medical care, alterations within the neuroendocrine axes occur which are thought to be essential for survival, as they postpone energy-consuming anabolism, activate energy-producing catabolic pathways, and optimize immunological and cardiovascular functions. The hormonal changes present in the acute phase of critical illness at least partially resemble those of the fasting state, and recent evidence suggests that they are part of a beneficial, evolutionary-conserved adaptive stress response. However, a fraction of patients who survive the acute phase of critical illness remain dependent on vital organ support and enter the prolonged phase of critical illness. In these patients, the hypothalamic-pituitary-peripheral axes are functionally suppressed, which may have negative consequences by which recovery may be hampered and the risk of morbidity and mortality in the long-term increased. Most randomized controlled trials of critically ill patients that investigated the impact on the outcome of treatment with peripheral hormones did not reveal a robust morbidity or mortality benefit. In contrast, small studies of patients in the prolonged phase of critical illness documented promising results with the infusion of hypothalamic-releasing hormones. The currently available data corroborate the need for well-designed and adequately powered RCTs to further investigate the impact of these releasing factors on patient-centered outcomes.


Critical Illness , Intensive Care Units , Critical Care , Hormones , Humans , Neurosecretory Systems
19.
Sci Adv ; 7(19)2021 05.
Article En | MEDLINE | ID: mdl-33962944

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


MicroRNAs , Sepsis , Animals , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Sepsis/genetics , Sepsis/metabolism
20.
Curr Opin Crit Care ; 27(4): 385-389, 2021 08 01.
Article En | MEDLINE | ID: mdl-33967210

PURPOSE OF REVIEW: To summarize the clinical evidence for beneficial effects of ketones, ketogenic diets and intermittent fasting in critical illness, and to review potential mechanisms behind such effects. RECENT FINDINGS: Recent evidence demonstrates that activation of a metabolic fasting response may be beneficial to recover from critical insults. Potential protective mechanisms are, among others, activation of ketogenesis and of damage removal by autophagy. Novel feeding strategies, including ketone supplements, ketogenic diets and intermittent fasting regimens, can activate these pathways - at least partially - in critically ill patients. Randomized controlled trials (RCTs) studying these novel feeding strategies as compared with standard care, are scarce and have not shown consistent benefit. Yet, all RCTs were small and underpowered for clinical endpoints. Moreover, in intermittent fasting studies, the duration of the fasting interval may have been too short to develop a sustained metabolic fasting response. SUMMARY: These findings open perspectives for the further development of fasting-mimicking diets. Ultimately, clinical benefit should be confirmed by RCTs that are adequately powered for clinically relevant, patient-centered endpoints.


Diet, Ketogenic , Fasting , Critical Illness , Humans , Intensive Care Units , Ketones
...